Sophorolipids-functionalized iron oxide nanoparticles.
نویسندگان
چکیده
Functional iron oxide nanoparticles (NP) have been synthesized in a one and a two-step method using a natural functional glycolipid belonging to the family of sophorolipids (SL). These compounds, whose open acidic form is highly suitable for nanoparticle stabilization, are readily obtained by a fermentation process of the yeast Candida bombicola (polymorph Starmerella bombicola) in large amounts. The final carbohydrate coated iron oxide nanoparticles represent interesting potentially biocompatible materials for biomedical applications. According to the synthesis strategy, magnetic properties can eventually be tuned, thus putting in evidence the direct effect of the glycolipid on the final material's structure (maghemite and ferrihydrite have been obtained here). A combination of FT-IR, Dynamic Light Scattering (DLS) and UV-Vis experiments shows that SL complex the nanoparticle surface via their accessible COOH group thus forming stable colloids, whose hydrodynamic diameter mostly varies between 10 nm and 30 nm, both in water and in KCl-containing (0.01 M and 2 M) solutions. The materials can stand multiple filtration steps (up to 10) at different extents, where the largest recorded average aggregate size is 100 nm. In general, materials synthesized at T = 80 °C display better stability and smaller size distribution than those obtained at room temperature.
منابع مشابه
Water-based Double Layer Functionalized Iron Oxide Nanoparticles for Enhanced Gene Delivery Applications
Iron oxide nanoparticles (magnetite (Fe3O4), hematite (Fe2O3)) have been received increasing attention in drug and gene delivery. In this work, water-base double layer functionalized iron oxide nanoparticles (DL-IONPs) were designed and prepared of a biodegradable, biocompatible carrier by co-precipitation method with high DNA loading capacity due to self-assembly of a second organic layer. The...
متن کاملFabrication of 2-Chloropyridine-Functionalized Fe3O4/Amino-Silane Core–Shell Nanoparticles
In this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of Fe2+ and Fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3-aminopropyl trimethoxysilane (APTS) by using well-known sol–gel method. Further reaction of the synthesized Fe3O4@APTS core-shell magne...
متن کاملDetermination of Lead and Cadmium in Various Food Samples by Solid Phase Extraction Using a Novel Amino-Vinyl Functionalized Iron Oxide Magnetic Nanoparticles
A facile method for synthesis of amino functionalized silica coated Fe3O4 magnetic nanoparticles is introduced. For this purpose, the surface of magnetic nanoparticles (MNPs) was modified with two precursors of silica which produced amine and vinyl functional groups on the surface of magnetic nanoparticles. The modified magnetic nanoparticles were characterized by transmission electron micr...
متن کاملIron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents.
Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 ± 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing...
متن کاملA Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment
Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties. Methods & Materials In this article, 49 articles related t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2013